

Problems:

Privacy Issue: Struggling with the consent of all involved person/identities.

Introduction

- Long-tailed Distribution: Collected data samples are extremely imbalanced.
- Attribute Annotation: Lacking detailed facial attribute annotations (e.g., pose and expression).
- Observations: Face synthesis based on GANs and 3DMM has made an extraordinary progress, making it possible to:
 - generate large-scale high-fidelity face images of nonexisting identities without data privacy issues.
 - explore the impacts of different dataset properties and facial attributes on face recognition accuracy.
- Solution: Exploring the potentials of synthetic face images for face recognition.

Figure 1: Real (top) and synthetic (bottom) face images.

Analysis

 Observation: A performance gap between SynFace and RealFace.

Method	Training Dataset	LFW	Syn-LFW
RealFace	CASIA-WebFace	99.18	98.85
SynFace	Syn_10K_50	88.98	99.98

Table 1: Cross-domain evaluation of SynFace and RealFace.

• Analysis: As shown in Table 1 and Figure 3, the domain gap with a special focus on poor intra-class variations of synthetic data contributes to the performance gap.

SynFace: Face Recognition with Synthetic Data

Haibo Qiu¹, Baosheng Yu², Dihong Gong³, Zhifeng Li³, Wei Liu³, Dacheng Tao^{1,2}

¹JD Explore Academy ²The University of Sydney ³Tencent Data Platform

Method

• Identity Mixup (IM): A mixture of identities in the coefficient space, i.e., interpolating two different identities as a new intermediate one to enlarge the intra-class variations.

$$\alpha = \varphi \cdot \alpha_1 + (1 - \varphi) \cdot \alpha_2,$$

$$\eta = \varphi \cdot \eta_1 + (1 - \varphi) \cdot \eta_2,$$

Figure 2: One identity gradually and smoothly varies to another identity with IM.

• Domain Mixup (DM): A mixture of large-scale synthetic face images and a small number of labeled real-world face images is proposed to alleviate the domain gap.

$$X = \psi \cdot X_S + (1 - \psi) \cdot X_R,$$
$$Y = \psi \cdot Y_S + (1 - \psi) \cdot Y_R,$$

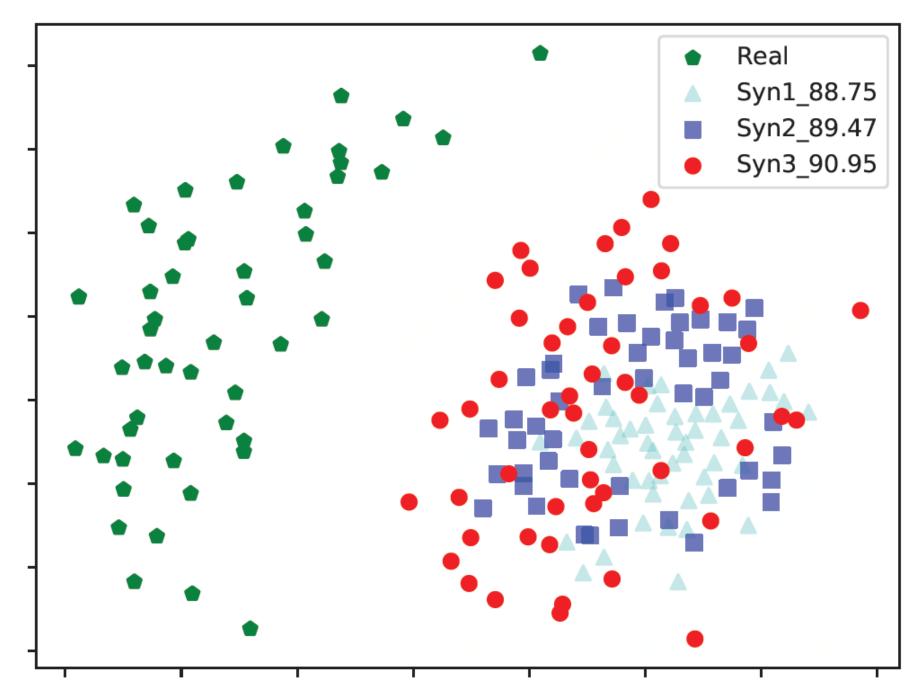
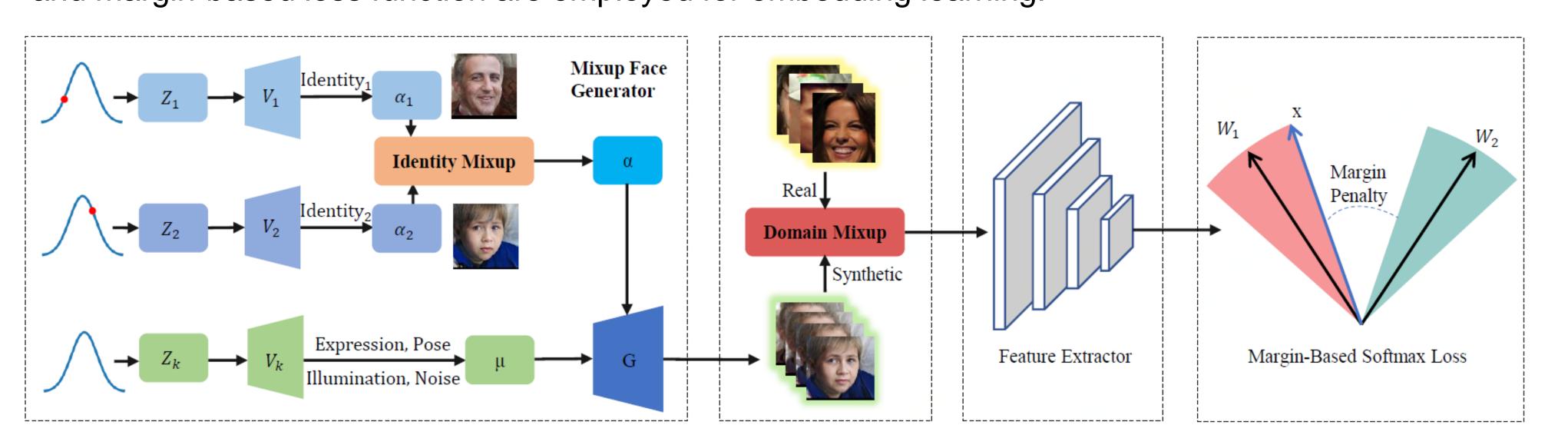


Figure 3: Visualizations of feature distributions from real and three different synthetic datasets.

 Overall Framework: Identity mixup is first embedded into the face generator, which then generates face images with different identities and intermediate states. Next, the synthetic face images are cooperating with a few real face images via domain mixup. Finally, a backbone network is used for feature extraction and margin-based loss function are employed for embedding learning.



alccvoctober 11-17 and alcovery october 11-17 an

Experiments

• Effectiveness of Identity Mixup (IM):

Method	ID	Samples	LFW	LFW(w/IM)
(a) 1K_50	1K	50	83.85	87.53
$(b) \ 2K_{-}50$	2K	50	86.18	89.28
$(c) 5 \text{K}_50$	5K	50	88.75	90.95
(d) 10K_2	10K	2	78.85	80.30
(e) 10K_5	10K	5	88.22	88.32
$(f) 10K_{-}10$	10K	10	89.48	90.28
(g) 10K_20	10K	20	89.90	90.87
(h) 10K_30	10K	30	89.73	91.17
(i) 10K_50	10K	50	88.98	91.97

Table 2: The influences of different depth and width w/wo identity mixup (IM).

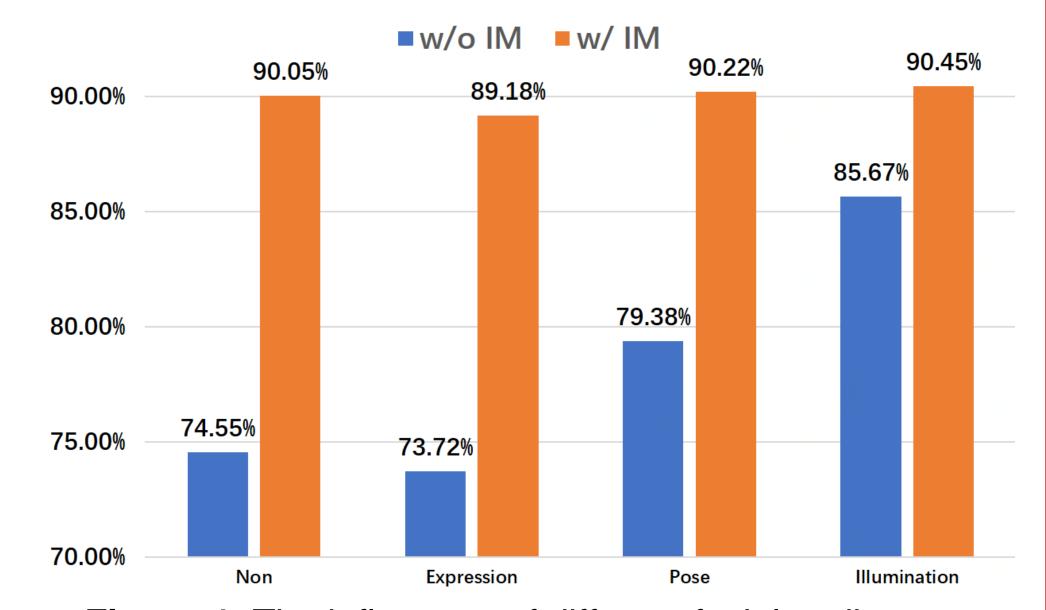


Figure 4: The influences of different facial attributes w/wo identity mixup (IM).

• Effectiveness of Domain Mixup (DM):

Method	R_ID	Samples per R_ID	Accuracy
Syn_10K_50	0	0	91.97
Real_1K_10	1K	10	87.50
Mix_1K_10	1K	10	92.28
Real_1K_20	1K	20	92.53
Mix_1K_20	1K	20	95.05
Real_2K_10	2K	10	91.22
Mix_2K_10	2K	10	95.78

Table 3: Results of synthetic, real and mixed datasets w/wo domain mixup (DM).